CHAPTER 1

Introduction

CHAPTER 2

Background

CHAPTER 3

MIN'’s Theory

CHAPTER 4
Types

Different programming languages have type schemes for different reasons. In-
deed, the word “type’ is widely applied and often misunderstood. I will therefore
precede the discussion of MIN’s type scheme with a brief review of some of the
different kinds of type scheme. [Is this a good idea?]

4.1. Type schemes

C provides an extreme example, since its type scheme is not even sound. It is
complete, however, so there is some value in checking it: since any legal program
can be made type-correct, type errors are indicative of errors. C confuses matters
further by mixing up its representation types with its arithmetic operations. For
example, casting a ‘float’ to an ‘int” can change its numerical value, without stray-
ing outside the language definition (it rounds towards zero). If ever one designed
an untyped version of C (or Java for that matter), these so called ‘type casts’ would
have to remain.

For all the advantages of this design, there are good reasons not to design lan-
guages like that any more. (People still do, of course.) What, then, is a type
scheme? Let us adopt the following informal definition (which excludes what
C calls a type scheme):

DEFINITION 4.1.1. (Type scheme)

A type scheme is a statement which, if it is ever true of a program, remains true at
all later points in the program’s execution.

The property which remains true is called the subject reduction property of the type
scheme.

4.1.1. Dynamic types. Let me illustrate definition 4.1.1 with another extreme
example: Lua (Python is similar). In Lua, there are a finite number of types,' in-
cluding ‘table” and ‘number’. A value of type ‘table’ is (a pointer to) a hashtable,
whereas a value of type ‘number’ is a double-precision floating-point number. Al-
though one could contrive pathological examples, it is usually not difficult to dis-
tinguish numbers from hashtables, even on 64-bit platforms where each occupies
64 bits, because certain 64-bit values are not legal numbers, and because hashtables
have a highly redundant structure and must reside in heap-allocated blocks.

Lua has what is called a dynamic type scheme. Every value is stored in memory
beside its type, even at run-time. Arithmetic operations operate on the types as

T am ignoring tag methods.

4.1. TYPE SCHEMES 5

much as on the values. For example, the result of adding two numbers is a number.
Indeed, the type can even affect the action of arithmetic operations on the value,
since attempting to divide a number by a table produces an error, at run-time, even
if the table happens to be a legal number. It is also possible to examine the type of
a value using an ‘if’ statement.

It is nonetheless fair to call this a type scheme, because the following statement
is always true: values stored beside the type ‘number” are always legal double-
precision floating-point numbers, and values stored beside the type ‘hashtable’ are
always pointers to properly structured hashtables in heap-allocated blocks. The
value of this statement should be obvious: although it affords the programmer no
compile-time protection, it makes programs easier to debug, limits the possible
damage that a broken program can cause, and opens up the possibility of running
untrusted programs. All this is achieved without asking the programmer to learn
anything beyond what would be necessary for an untyped language.

4.1.2. Static types. One of the attractions of a dynamic type scheme is that
it is very easy to check that the language is type-safe. One simply stares hard
at all of the available arithmetic operations until satisfied that they are individu-
ally type-safe. The result then follows by induction on time. However, storing
type information at run-time is a major expense. Performing arithmetic on type
information at run-time is also expensive (although in the case of Lua this is not
a problem). High-performance languages therefore invariably use some sort of
static type scheme.

A static type scheme is one in which the run-time type of a value (or, to be pedantic,
an expression, or a variable) is known perfectly at compile time, to the extent that
it can be discarded at run time. An extreme example of a statically typed language
is ML, which goes to great lengths to infer the type of expressions. Type inference
is not typical, however, and fits badly with separate compilation. In most lan-
guages, and in ML's module system, the programmer is required to supply type
annotations.

The statement which is always true is as follows: the run-time value of a variable
always matches its compile-time type. Unlike in Lua, this statement is not auto-
matically true of all programs. It is the ML compiler’s responsibility to perform at
compile time all the type arithmetic that Lua performs at run time, and to reject
any program in which the type annotations are incorrect. If separately compiled
programs are linked, the linker must perform additional type checking. Having
checked all arithmetic operations in a particular program, the type-safety of that
program follows by induction on time.

The advantages of a static type scheme include most of those of a dynamic type
scheme: it limits the damage that a broken program can cause, and it supports ex-
ecution of untrusted code. In addition, it is a much more effective way of debug-
ging programs: although very few ML programs compile first time, they almost
always run first time. The performance benefits are substantial: of all the world’s
well-known languages, OCaml (a dialect of ML) is currently the fastest safe one,
beaten only by C, and is also among the most memory-efficient.

A disadvantage of a static type scheme is that some programs which at run-time
behave entirely properly (according to a dynamic type scheme) will be refused by

4.1. TYPE SCHEMES 6

the compiler. Another is that a static type scheme is necessarily abstract, and the
more abstract it gets the more difficult it is for programmers to provide the nec-
essary type annotations. Of course, no programmer has any business writing a
program unless he knows why it works; the problem is the extra language needed
to express subtle reasoning. In practice, a language designer can pick a compro-
mise between completeness and complexity.

4.1.3. Representation types. [Omit this section? It’s interesting but off-topic.]

Java’s type scheme is a mixture of many complementary ideas. For efficiency
it uses static types on short time-scales, and resorts to dynamic types whenever
things get too complicated. It is not an extreme example of anything, but buried
within it there is a good example of representation types.

The representation of a Java object in memory is not discernible from within the
language, but on modern processors it is fairly tightly constrained by efficiency
considerations. It contains (among other things) a dynamic type (called its actual
class), and a table of methods. In source code, methods are distinguished by their
names, which are human-readable strings. At run-time methods are distinguished
by their indices in the table, which are efficient integers. The dynamic type defines
the mapping from one to the other. The methods are packed in tight to save mem-
ory, so methods of objects with different dynamic types may have different indices
even if they have the same name.

Code can call the methods of an object if it has a reference to the object. The ref-
erence has a static type. The most useful static type is a perfect match for the
dynamic type (a class), since it is then possible to find any method with only trivial
arithmetic. A static type which defines a prefix of the method table (a superclass) is
just as good, except that some methods will be unavailable. Java provides a third
possibility: a static type that defines an arbitrary subset of the methods, by name
(an interface). Calling a method through an interface is less efficient than calling it
through a class, because the process of finding it is more complicated (for exam-
ple, it might be retrieved from a hashtable, or from a separate table whose address
must itself be calculated).

The point about representation types is that the effect of calling the method is ex-
actly the same in all three cases.” Furthermore, the data structure used to represent
the object in memory is exactly the same, since it depends only on the dynamic
type. The only difference between the three cases is the information that is avail-
able to the caller. An implementation of Java could, if it wanted, use hashtable
lookups for all method calls. It would not change the behaviour of the language.
It would seriously impair its performance. The type scheme, then, is providing
an optimisation mechanism that would otherwise be unavailable. It manages this
while hardly requiring programmers to learn anything; they simply think in terms
of the method names.

2At least, this is true unless there are two methods with the same name and the same number of
arguments, but such that the argument types of one are subtypes of the argument types of the other,
and such that the former does not appear in a superclass. Then, if the method is called through a
reference whose static type is the superclass, the more specific method may be ignored. This is not a
good design! Fortunately, it rarely happens.

4.2. MIN’S TYPE SCHEME 7

4.1.4. Types as sets. In functional languages, and in mathematical logic, the
type of an expression can be viewed as a set containing all the possible values of
that expression. This picture has contributed a great deal of vocabulary, including
booleans, integers, pairs, lists, collections, maps, records and so on. However it
does not generalise well. It handles functions okay, but it begins to look shaky at
the mention of streams, especially output streams, and falls over completely at the
first attempt to describe non-functional interactive behaviour, such as that needed
to grab and release a lock.

To be fair, pure functional languages like Haskell have found a way to cope with
input and output, using monads. An interactive program is modelled as a function
which acts on the whole world, and returns its new state. The type scheme is
intricately designed to ensure that the output world depends on the input world
via a unique dependency chain, so that it can’t be shared. Intermediate values that
depend on copies of the input world can exist, but ultimately only one of them can
be returned.

This is ingenious but totally insane. It involves modelling the world as an element
of a set, a thing that you can manipulate, while at the same time the world contains
other programs that model you as a thing that they can manipulate. It escapes set-
theoretic paradoxes only by using an abstract interpretation of the world. I find
this philosophically very ugly.

4.2. MIN’s type scheme

We have seen several reasons to have a type scheme, none of which apply to MIN.
Types help to catch programming errors, but MIN is not especially aimed at hu-
man programmers. Types make programs safe, but that in itself is not a goal.
Safety is merely a prerequisite for many other properties. Types can improve per-
formance, but that is again beyond the scope of this thesis.

So why have Iinsisted that MIN must have a type scheme? Is it really more impor-
tant than arithmetic? No, but I don’t expect any reader to doubt the possibility of
adding arithmetic primitives to MIN harmlessly. Similarly, I am sure you will be-
lieve that type schemes could be invented to make MIN safe, secure, efficient, or to
give it any other property that type schemes have given to other languages. I have
therefore gone for a very simple and conventional design: MIN’s type scheme
is purely static, it is logically ‘simple” (in the sense of the simply-typed lambda
calculus), it has no representational content, and MIN’s types can’t in general be
interpreted as sets.

However, there is one property that is essential for a language that is designed
to be optimised automatically, and which most languages do not have. It is not
obvious that a type scheme can contribute to this property, and that is why I am
writing a chapter about it. MIN has a type scheme because types enlarge the pro-
gram equivalence relation, thereby permitting optimisations that would otherwise
not be valid.

4.2.1. Program equivalence. The effect of types on program equivalence is
highly counter-intuitive. After all, static types are erased before a program is run,
and do not affect its operational semantics at all. However, reduction-closure is

4.2. MIN’S TYPE SCHEME 8

only one of the four properties that are required of program equivalence. Another
is context-closure. The type checking performed by the compiler and linker sub-
stantially reduces the set of contexts in which a program might find itself, elimi-
nating many that might otherwise provide a way of distinguishing two programs.

The point is illustrated in figure [4A]. Although a little contrived, this example
shows the dramatic effect the types can have. All five possible equivalence rela-
tions on a three-element set are obtainable, simply by substituting different types
for a. In two of the five cases (unit and stream) the equivalence relation contains
an obvious optimisation that saves both time and memory, but neither transfor-
mation is valid at the other type.

Examples like this, of which there are many more in chapter 6, argue strongly
that an intermediate language for an optimising compiler must have a decent type
scheme, or abandon all pretence of ambition.

4.2.2. Approach. A typed program consists of a program and an interface. Fig-
ure [4B] illustrates the way in which these two components are gleaned from a
program in the graphical notation. It is the "AND gate” example yet again. The
program captures the rewrites and the main graph, as explained in chapter 3. The
interface captures the constructor declarations, and all the type information, in a
manner which I hope is obvious.

The subject-reduction property is that the program obeys the interface, in a sense
that I will make precise in section 4.3.3. Roughly speaking, the interface defines
some input transitions which the program must perform, and some output tran-
sitions which it may perform. The program and its context are treated completely
symmetrically: if one may send, the other must receive.

The operation of linking two programs must be redesigned with types in mind.
Not only must it construct a new program, it must also construct its interface. To
ensure that the resultant program obeys the resultant interface, linking becomes a
partial operation: there are perfectly legal typed programs which cannot be linked
together. This is of course the whole point. The effect of types on the barbed
equivalence relations follows immediately from this definition.

It is then necessary to redesign the labelled equivalence relations to keep up. Specif-
ically, we must modify the labelled transition relation on typed programs, so as

to enlarge the labelled equivalences in line with the barbed equivalences (the la-

belled equivalences are fairly useless unless they match the barbed equivalences).

It turns out that the required modification is very simple: we must remove some

of the input transitions.

4.2.3. Expressive power. [This section is fine, but probably in the wrong place.]

Most of the proofs assume very little about the structure interfaces, allowing it to
be upgraded cleanly later. However, for now I have fixed on a concrete definition
of ‘type” and ‘interface’, which I presented approximately in chapter 1, and which
is used in the practical part of this thesis. My definition is based on the following
simplifying approximations and restrictions:

4.3. DEFINITIONS 9

o The ports of an interface are independent. An interface assigns each port
a type. The transitions that may and must be possible at a port are then
constrained only by its type. Furthermore, the types of any new ports
created by a transition depend only on the constructor involved and the
old type.

o Every port will be used either only for input or only for output. The prop-
erty that distinguishes the cases is called the port’s polarity. The polarities
of new ports created by a transition depend on the constructor involved,
the old type, and the old polarity. The polarity and type of a port are
orthogonal; inverting all polarities is a symmetry operation.

e Silent transitions have no effect on the interface of a typed program.

e A type is an element of an abstract set, and has no internal structure. In
other words, my type scheme is based on a zeroth-order logic.

Any of these decisions could be changed to obtain a more powerful type scheme.
By modelling correlations between ports, we can for example specify that two
copies of a value behave in the same way, that is, that the program behaves like
a function (the question is moot for linear values). Bidirectional channels widen
the range of programming styles that the compiler will accept. Logics with quan-
tification support polymorphism and abstraction. I leave these possibilities for the
future.

4.3. Definitions

We need to import some definitions from chapter 3. For most purposes we can
treat them as black boxes, so you need not absorb all of chapter 3 just to read this
chapter (of course, if this chapter is the only part of the thesis which interests you
you’d be better off reading something else!).

We need the abstract sets (name) and (constructor). Recall the definition of {(action)
in terms of these:

(action) = (name) (constructor) ((name),... (name)) |
(name) (constructor) ({(name), ... (name)) |

with the restriction that all (name)s in an {action) must be different.

For programs, we can adopt a higher-level approach than chapter 3, and assume
a set (graph) of programs written in the graphical notation. In the language of
chapter 3, it is the quotient of {program) by the structural congruence. Similarly,

we assume that the labelled transition relation [] 4, []is a ternary relation on
(graph) x (action) x (graph). We will occasionally have to break through the ab-
straction layer and meddle with the concrete definitions, but not much faith is
required to skip those parts.

Recall also that fn(«) is the set of (name)s appearing in an (action) «, and fn(P) is
the set of free names of a (graph) P.

4.3. DEFINITIONS 10

4.3.1. New definitions. Assume an abstract set (type) of type identifiers. The
set of interfaces is defined by the following grammar:

(polar type) == 7(type) |!{type)
(declaration) := !(type) + (constructor) ({(polar type),...,(polar type))
(signature) == asetof (declaration)s
(protocoly = let (signature) in (polar type)
(interface) ::= a finite partial function from (name) to (protocol)

A (polar type) of the form !t is an output type, and ?t is an input type.> Given a
(polar type) T', define ¢ be !t if T =7t and ?¢ if T' =!t. In other words, overlining a
(polar type) toggles its polarity. Similarly define ptobe let Sin T if p=1let Sin T,

and define I to map each z onto 7 if I maps = onto 7.

It is convenient to use some notational sugar. Let z : p be the singleton (interface)
which maps the (name) z to the (protocol) p. Given (interface)s I and J with
disjoint domains, let I, J be their union. For example, we can write down a three-
element (interface) z : p,y : ¢,z : r. Let : § be the obvious generalisation to
tuples, which maps each z; to the corresponding p;. It is common for all ports of
an (interface) use the same (signature), so letlet S in & : T be the (interface) which
maps each z; to let Sin T;. I will even use this sugar for singleton (interface)s,
because I think let S in z : T' is more readable than z : let S in T

Define the set fn(I) of free names of an interface I to be the domain of I.

4.3.1.1. Variable names. Usually, I will choose my variables according to the
following convention (in addition to the convention I used for chapter 3):

For (type)s I will use t, u, v.

For (polar type)s Iwilluse T, U, V.
For (signature)s I will use S.

For (protocol)s I will use p, g, r.
For (interface)s Iwilluse I, J, K.

4.3.2. Labelled transition system on interfaces.
DEFINITION 4.3.1. (Transitions of interfaces)

Define a new labelled transition relation, a subset of (interface) x {action) x (interface),
to be the smallest satisfying the following axioms:

z,7¢ m(I) % c(T)es

e@) -OUT
IletSinzx !t RAaLIN LletSing:T

REACT

e ‘ =
z,y¢ m(I) Wc(T)eS IN -

LletSinz:2t 29 [let Sing: T I-

3This use of the symbols ! and ? is approximately copied from the programming language Pict
[ref].

4.3. DEFINITIONS 11

PROPOSITION 4.3.2. (Transitions of interfaces)

The labelled transition relation satisfies the following additional rules, which capture the
polarity symmetry and the independence of the ports:

A + A 5 o
I 15T s -
2 lppy T2 lyngey 12T M@nfl) =4} p,p
T i} F I 4 I I, J = I', J
PROOF. Easy. O

The labelled transition system on (interface)s treats free names in the same way
as that on (graph)s: if I = I' then fn(I) A fn(a) A fn(I') = {}, and if a = zc()
or a = Tc(y) then € n(I) and § € fn(I'). The labelled transition system on

(interface)s is quite different from that on (graph)s in other ways. For example,
we can easily construct an (interface) I such that I M I L(z)) I, but b # ¢, or

|71 # 2], or I # L[g/Z).

4.3.3. Obeyance. The subject-reduction property that characterises MIN’s type
scheme is that a program cannot get past the compiler unless it obeys an interface,
in the following sense:

DEFINITION 4.3.3. (Obeyance)

Say a relation R from (graph) to (interface) is an obeyance iff it satisfies the follow-
ing:
If P R Ithen fn(P) = fn(I).

IfP RIandI X I'thenP 2 P'and P' R I'.

IfP R Tand P> P'then T2 I'and P! R I'.
IfP RIandPS P thenP' R I.
Say a pair P :: I is a well-typed program if there exists an obeyance which relates P

tol.

Note that the relation :: is both the set of well-typed programs and the largest
obeyance.

4.3.4. Linking. Recall from chapter 3 that the result of linking two (graph)s
P and @) is written P x Q.
DEFINITION 4.3.4. (Linking interfaces)
Define the linking operation x on (interface)s as follows: I, J x J, K = I, K.
Note that linking is a partial operation; I x J is not defined for all I and J. Linking

is symmetric, and the empty interface is its unit. Also, If in(I) Nin(J) Nn(K) = {}
and I x (J x K) is defined then it is equal to (I x J) x K.

PROPOSITION 4.3.5. (Linking respects obeyance)
IfP::Tand Q :: Jand I x J is defined then P x @ = I x J.

4.3. DEFINITIONS 12

PROOF. ConstructtherelationR={P x Q,I x J | P :: I and @ :: J} and show
that it is an obeyance by checking the conditions of definition 4.3.3.

Suppose P x Q R I x Jbecause P ::Iand @ :: Jand that I x J 2 K’ for some
input action A. Then either I MrandK' =T'xJorJ 2 Jand K' = I x J'.
Without loss of generality, assume the former. From I A and P :: I we deduce

P23 Pand P i I By the PAR] rule of chapter 3, P x Q2 P xQ. Finally,
P'x @ R I' x J as required.

Suppose P x Q@ R I x Jbecause P ::Iand @ :: J and that P x @ 2, R’ for some
output action X (the case of a silent action is similar). Distinguish cases according
to the rule (from chapter 3) used to derive the transition.

If Px@Q 1) R'was derived using the PAR] rule (the PAR), case is similar) then
P 23 P and fn(A) N fn(Q) = {} and R’ = P’ x Q. This case is similar to the

input case: we deduce that I A I' hence I x J A X J,and P' :: I', hence
P'x @ R I' x J as required.

If P x Q 2, R'was derived using the COM} rule (the COM,, case is similar) then

P X9, prand Q =% =D, Q' and P' x Q' 2 R'. From P D, pland P = I

we deduce I 2%, I' and P' :: I'. Now z must be in the intersection of fn(I)
and fn(J). Since I x J is defined, we cannot have I 222, p
g ze@)

without also having

J' for some J' such that I x J = I' x J'. Since @ :: J and input transitions
are deterministic, ' must be the unique program such that Q' :: J'. Therefore

P'x @' R I' xJ'. By induction on the derivation of P’ x Q' 2 R', we deduce

that I’ x J' 2 K’ and R’ :: K’ as required. O

We can therefore define the operation of linking two typed programs as follows:

DEFINITION 4.3.6. (Linking typed programs)
LetP:IxQ:JbeP xQ:1IxJifl x Jisdefined, and undefined otherwise.

4.3.5. Subtypes. Say a relation R on (interface)s is a type simulation iff it satis-
fies the following:

o 17 R Jand J ZDs 7 then T =Yy pand I' R J'.
o I R Jand I =9, Ithen 7 Z9y jiandI' R J'.

Say I is a subinterface of J, and write I <: J, iff I R J for some type simulation
R. In other words, <: is the largest type simulation. Also, say p is a subprotocol of
q, and write p <: ¢, iff z : p <: x : ¢ (the choice of z is immaterial).

Intuitively, (let.Sin) ?¢ is a subprotocol of ?u if it is prepared to suffer a wider
variety of inputs, in much the same way that a Java subclass is one that offers
more methods. Alternatively, !u is a subprotocol of !t if it promises to stay within
a narrower variety of outputs, in much the same way that a subset is one that has

4.4. TYPE CHECKING 13

fewer elements. However, neither picture completely captures the general case,
in which inputs and outputs are mixed in sequence and in parallel. Arbitrarily,
?t <: lu for all ¢ and u. The subinterface relation is defined so that I <: J iff
fn(I) = fn(J) and I(z) <: J(z) for all z € fn(I).

The subinterface relation inherits a polarity-reversal symmetry. The symmetry
operation is contravariant: I <: J iff J <: I. Similarly, p <: g iff ¢ <: p, and in
particular !¢ <: lu iff 7u <: 7t.

The subinterface relation (and also the subprotocol relation) is a pre-order on inter-
faces: it is transitive (because the composition of <: with itself is a type simulation)
and reflexive (because = is a type simulation), but there exist different interfaces
I and J such that I <: J and J <: I. Indeed, I and J need not even be strongly
bisimilar. For example, I could be let {¢ + ¢(t),t < c¢(u)} in 2 :!¢ and J could be
let {t < ¢(t)} in z :!t. It’s a bit like mutual simulation. Nonetheless, if I <: J and
J <: 1 then I and J are interchangeable for the purposes of type checking.

The crucial property of the subinterface relation is its interaction with the obeyance
relation: If P :: T and I <: J then P :: J (because the composition of :: and <:is an
obeyance).

4.4. Type checking

Recall from chapter 1 that a MIN program in the graphical notation consists of
several sections. It has a main graph, and rewrite rules for executing it. These
form the untyped part of the language. It also has node declarations and subtype
declarations, which are the subject of this section. Finally, the main graph has an
interface. The goal of this section is to show that the checks performed by the
compiler are sufficient to ensure that the program obeys its interface; that is, that
the type-checking algorithm is sound.

Roughly speaking, the constructor declarations and subtype declarations are used
to construct a type simulation, which is then combined with the destructor dec-
larations to construct an obeyance. Either construction can fail. In order to make
a proper type simulation, the subtype declarations must be compatible with the
constructor declarations. In order to make a proper obeyance, the destructor dec-
larations must be compatible with the rewrite rules. Having checked that both
constructions work, the compiler can easily check that the obeyance relates the
main graph to its interface.

4.4.1. Signature. All protocols in a MIN program written in the graphical
notation have the same (signature). This is no handicap: given two protocols
let Sy in Ty and let S; in T> we can choose two disjoint injections ¢ and j on (type)
and a form a common signature S = i(S1) U j(S2), so that let S in ¢(Ty) is equiva-
lent to the first protocol and let S in j(T%)is equivalent to the second.

The signature is written explicitly in the graphical notation, in the form of the con-

structor declarations. Each (declaration) !t « ¢(U) corresponds to a declaration
of a constructor ¢ whose principal port is an output of type ¢t and whose auxil-

fary ports have polarities and types U. For example, the program in figure [4A]

4.4. TYPE CHECKING 14

declares the signature

{lunit + nil(),
list « nil(),
list < cons(!bool, ist),
Istream <« cons(!bool, !stream),
lbool <+ t(),
Ibool + f()}

4.4.2. Subtype relation. The compiler constructs a type simulation from the
subtype declarations in a graphical program using an ‘up to’ technique.

DEFINITION 4.4.1. (Type simulation precursor)

Given a relation R on (protocol)s, let R be the smallest relation on (interface)s
satisfying the following rules:

p R ¢ IRJ LRJL LR
w:pEm:q JRT II,IZEJI,JZ
IRJ JRK
I RI IRK

Say R is a type simulation precursor iff it satisfies the following conditions (in which
the choice of (name) z is immaterial):

e Ifp Rgandzx:q Ny 4 for input action A thenz : p AN rand I’ R J.
e Ifp R gandz:p 2 I' for output action X then z : g AN JandI' R J.
PROPOSITION 4.4.2. (Type simulation precursor)

If R is a type simulation precursor, then R is a type simulation.
PROOF. Induction on the derivation of E All cases are easy. O

A program in the graphical notation explicitly includes a candidate type simu-
lation precursor: a subtype declaration ' <: U corresponds to a single element
(let Sin T, let S in U) of the relation (S is the program’s (signature)). Of course,
the compiler must check that the declared relation really is a type simulation pre-
cursor. The checks it performs were explained informally in chapter 1. The fol-
lowing proposition states that they are sufficient.

PROPOSITION 4.4.3. (Subtype checking)

Suppose R is a relation on {protocol)s such that whenever p R q we find either p =
let Sinltand ¢ = let Sinlu or p = let Sin ?u and q = let Sin ?t, and for all 't +
(T) € S there exists u < ¢(U) € S such that |T| = |U| = n, say, and forall 1 <i < n
we find either let SinT; R let SinU;orlet SinU; R let SinT;. Then R is a type
simulation precursor.

PROOF. Immediate from the definitions. O

4.4. TYPE CHECKING 15

4.4.3. Obeyance relation. The compiler uses another “up to” technique to con-
struct an obeyance.

Recall the syntax of a program from chapter 3. A graphical program is a structural
congruence class, each element of which is of the form let E in p where E is an
environment (a set of rewrites of the form ¢ — ¢') and p represents the main
graph. The environment E is a formalisation of the rewrite rules of the program.
Recall also that a wire joining x and y is written (z, y), a destructor with ports & is

-

written d(Z), a halt node with free ports Z is written 0(z), and a constructor with
auxiliary ports is attached to a name z by replacing x with ¢(%).

DEFINITION 4.4.4. (Obeyance precursor)
Assume an environment E and a type simulation R.

Given a relation O from destructor symbols to tuples of (protocol)s, let O be the
smallest relation from (programy)s to (interface)s satisfying the following rules (in
which I have omitted ‘let E in * everywhere):

dOop PO IletSinz:?t tecT)eS PORI

df) O &:p Plasc(y)] O_ IletSing: T POI
{2} = fn(J) POI QOJ
0@ O I (z,y) O z:py:p PxQ O IxJ

Say O is an obeyance precursor iff O satisfies the following: for all p — p' € E if
letEinp O I'thenletEinp' O I.

Note that if P = @ and @ Q I then P Q I (induction on the derivation of
P=Q).

PROPOSITION 4.4.5. (Obeyance precursor)

If O is an obeyance precursor, then O is an obeyance.

PROOF. The case of input transitions is easy. Suppose P O I and T 2@, p.

Then P “7, Pl#»1c(f)] by receptivity (see chapter 3). From I LLUNG [

know I = I;,let Sinz :?t and 't + ¢(T) € Sand I' = I,let Sin 7 : T. Finally,
from P O I we deduce Pl c(7)] O__ I' as required.

Now for silent transitions. Suppose P O I and P I+ P'. Distinguish cases
according to the derivation of P = P'. For the PAR and COM rules, proceed along
the lines of proposition 4.3.5, using induction on the derivation of the transition.
Eventually, the derivation boils down to an instance of the REACT rule, and we
use the fact that O is an obeyance precursor.

For output transitions, start as for silent transitions. Suppose P O I and P T,
P'. As before, we can cope with the PAR and COM rules by induction on the
derivation of the transition. We are left with an instance of an OUT rule. With-
out loss of generality, suppose it is OUT;, so P = let Ein (z,c(f)) and P' =

4.4. TYPE CHECKING 16

let E in (§,%). The remainder of the derivation of P O I is now tightly con-

strained; by induction on the derivation of O, we reduce it to a case in which ¥ = 2,
a tuple of (name)s, which is then easy. O

A program in the graphical notation explicitly includes a candidate obeyance pre-
cursort, in the form of the destructor declarations. A declaration of a destructor
symbol d whose ports have protocols p corresponds to an element (d,) of the re-
lation. The checks, described informally in chapter 1, that the compiler performs
in order to ensure that the relation really is an obeyance precursor correspond ex-
actly to its formal definition.

4.4.3.1. Complexity. Let me pause briefly to discuss a question provoked by
the definition 4.4.4: given O and P how difficult is it to enumerate the interfaces
I such that P O I? The answer is that it is decidable but NP-complete. The
derivation of P O T is guided by the syntax of P, which ensures that the enumer-
ation terminates. Intuitively, it is a satisfiability problem: we're trying to choose a
protocol for every wire in the main graph of P, including the internal ones, such
that every node locally looks like one of its declarations.

Various factors conspire to ensure that the potentially exponential behaviour does
not bite. Firstly, it is only necessary to enumerate the minimal interfaces with re-
spect to <:, since the other solutions follow easily from them, and in fact don’t
need to be checked at all for definition 4.4.4. Secondly, the program is compre-
hensible to the programmer, and is probably therefore quite simple. In particular,
redexes and reducts are small, and only redexes and reducts need to be checked in
order to verify that a relation is an obeyance precursor. Thirdly, there will probably
be several wires in a graph for which there is only one possible protocol; this per-
mits an efficient divide-and-conquer approach. Fourthly, for the main graph, the
programmer can add explicit type annotations to some internal wires if necessary.

4.4.4. Linking. According to definition 4.3.6, we can only link P :: I with
@ :: Jif I and J assign their common (name)s exactly inverse (protocol)s. Inverse
(protocol)s must have the same (signature). Since all protocols in I and all proto-
cols in J have the same (signature), this means that P :: I can only be linked with
@ :: J if the constructor declarations of the two programs are identical (or if they
have no (name)s in common). Inductively, this seems to mean that all programs
running on a computer must have the same constructor declarations, and that pro-
grammers have no choice and no flexibility of data representation. Obviously this
would be absurd.

The day is saved by the subtype relation. In order to link P :: I with @) :: J the
compiler tries to find minimal interfaces I' and J' such that I <: I' and J <: J'
and I x J is defined, and then forms P :: I' x) :: J'. Equivalently, split I into
two parts I, I» so that fn(l;) Nfn(J) = {} and fn(I») C fn(J), and similarly split J
into Ji, J2. The result of linking P :: I with Q :: Jis then P x @ :: I, Jy, provided
I, <: J5 (or equivalently I, :> J»), and undefined otherwise.

The linker, as well as the compiler, must therefore understand the subtype relation.
In fact, the linker must be cleverer: while the compiler operates within a program,
and can use the type simulation conveniently provided by the programmer, the

4.5. PROGRAM EQUIVALENCE 17

linker is expected to use <: itself, the largest type simulation. It must construct the
type simulations it needs without any help from the programmer.

This construction is not hard. The required relation is bounded above by the finite
relation that relates the protocols reachable from I to those reachable from .J5.
Furthermore, the ports can be considered separately. Usually, the relation needed
to compare two protocols will have no more elements than the smaller of the two
protocols has states.

Given that conjuring type simulations from nothing is so easy, why does MIN ask
the programmer to supply a type simulation precursor at all? Only to make a
distinction between relationships that are intended and those that occur through
coincidental name conflicts.

4.5. Program Equivalence

Having defined the set of typed programs, and the partial operation of linking
them, we are in a position to define program equivalence. For the untyped cal-
culus, we arrived at a definition of barbed coupled similarity almost by turning a
metaphorical handle. Only the definition of soundness was worthy of debate. For
the typed case we can use the same definition of soundness again, so there are no
decisions to be made at all.

As in the untyped case, the barbed equivalence is difficult to use in practice, so we
should then try to find a labelled equivalence that coincides with it. With current
technology, this task is not automatic. For my simple type scheme, and using the
untyped calculus as a base, it turns out to be quite easy.

4.5.1. Barbed coupled similarity. Adapting the definition of barbed coupled
similarity from chapter 3 to the typed calculus is straightforward. One point of
note is that programs with different interfaces are always distinguishable; it isn’t
even necessary to run them.

DEFINITION 4.5.1. (Barbed coupled similarity)

Let {constructor)’ be larger than {constructor) by a single element “test’. As in
chapter 3, propagate this change through the definition of the calculus, so as to
obtain the set ::' of typed programs of the enlarged calculus, analogous to the set
:: of definition 4.3.3.

Say a relation S on ::/, which only relates programs with the same interface, is
sound iff forall P ::' I S (@ ::' I either both P and) have a “test’ node in their
main graph, or neither do.

—* S.

Say S is context-closed iff forall P ' I S @ :' I and for all R ::' J such that I x J
is defined,both P! IxR:'J S Q' IxR:'JandR:! JxP:' T S R:'
JxQ@ I

Say S is coupled iff S C —* St

Say S is reduction-closed iff S —* C
!
I

Say S is a barbed coupled simulation iff it is sound, reduction- and context-closed
and coupled. Let barbed coupled similarity, written > ¢, be the restriction to :: of the

4.5. PROGRAM EQUIVALENCE 18

largest barbed coupled simulation, and let mutual barbed coupled similarity, written
=¢, be its largest symmetric subrelation.

4.5.2. Labelled coupled similarity. It turns out that the right way to define
the labelled transition system for typed programs is to form the intersection of the
labelled transition systems on {graph) and (interface).

DEFINITION 4.5.2. (Labelled transition relation on typed programs)
LetP:1 % P = I'iff PS5 Pland I 5 I

Note that the set of actions that P :: I can perform differs from those that the
untyped P can perform only by the removal of some inputs; the fact that P obeys
I ensures that all output and silent actions will be retained.

DEFINITION 4.5.3. (Labelled coupled similarity)

Say a relation S on :: which only relates programs with the same interface is a
labelled simulation iff:

eIfP:] S Q:=TandQ =1 5 Q' = I'thenP =1 5" P I' and
P IS Q:TI.

eIfP:T S QuTandQ =15 Q' ::I'witha;éT,thenP::IL)*3>L>*
P :x:l'andP' =:I' S Q' :: I'.

Say S is coupled iff S C 5 SV

Let labelled coupled similarity, written 2> ¢, be the largest labelled coupled simula-
tion, and let mutual labelled coupled similarity, written ~¢, be its largest symmetric
subrelation.

There is clearly a lot of redundancy in this definition. For example,if Q :: I = Q" =:
I' then we know I = I'and hence I = I'. For another example, if Q :: T EN Q I

and P :: I then we know that a unique P’ exists such that P :: I LNy g
It would therefore be possible to concoct an equivalent but much more concise
definition of a weak simulation, but I feel there is value in adhering to the familiar
structure of the general case.

4.5.3. Labelled and barbed similarity coincide. This section proves the the-
orem that shows that the definition of the labelled transition system on typed pro-
grams is right. Specifically, typed programs are related by barbed coupled simi-
larity iff they are related by labelled coupled similarity.

The proof closely follows the corresponding proof in chapter 3. We show that
barbed coupled similarity is contained in labelled coupled similarity by showing
that it is a labelled simulation, and conversely that labelled coupled similarity is
contained in barbed coupled similarity by showing that it can be extended from ::
to :' to obtain a barbed simulation. I will only present the differences.

The most expensive ingredient of the proof, namely the close relationship between
reactions and silent transitions, is completely unchanged from chapter 3. How-
ever, there are two other results that need to be checked for the typed calculus.
First, we must show that labelled simulations are closed under the new definition

4.5. PROGRAM EQUIVALENCE 19

of linking. Second, we must show how to add types to the test harness used to
show that barbed coupled similarity is a labelled simulation.

For the first result, we do not need the full ‘simulation up to linking’ result from
chapter 3. The following proposition is therefore more specialised than the one it
replaces.

PROPOSITION 4.5.4. (Labelled coupled similarity is context-closed)

Let S be the smallest relation on :: containing labelled coupled similarity 2 ¢ and satisfying
the following rules:

P1 ::Il ﬁQl ::Il P2 ::IQ §Q2 ::12

P1 :ZIl XP2 :ZI2 § Ql 1211XQ2 ::Iz

Then S is a labelled simulation.

PROOF. Suppose P:I S Q=TandQ =1 5 Q' = I, forsomea # 7
(the case a = 7 is similar). We need to show that P:I L>* 47" P I' and
P I S Q’- I'upP:1 S Q= IbecauseP : I 2¢ Q : Ithenthe
result is immediate. Suppose, therefore, that P :: I S Q :: I because P :: [=
P:h xPyu:Lhand@Q I =Q, 2L xXQy:Lhand P = I; S @y :: I and
Py:I S Qs :: 1y, and proceed by induction on the derivation of the transition.
Since @ :: 11 X Q2 Ih = (Q1 X Q2) = (I1 X L), the transition Q1 :: [1 X Q2 ::
I, 5 Q' I' was derlved from Q1 X Q2 = Q and I} x I, = I'. Distinguish
cases according to the derivation of Q; x Q2 — Q'. The case analysis is very
similar to that in chapter 3, but I will spell it out. As usual, we may canonicalise
the derivation, and so ignore the case of the IN rule.

If Q1 x Q2 = Q' was derived using the PAR; rule (the PAR; rule is similar) then
Q1 = Q) and fn(a) N fn(Q2) = {} and Q' = @} x Q2. From fn(a) N n(Q2) = {}
we know fn(a) N fn(ly) = {}, and so from I} x I, = I' we know I; = I} and
I' = .*T{ X Iz. Therefore, Q1 :: I i: Q) * I{. By the inductive hypothesis, P; ::
n.o%35L P :Il,andso P, 5 55 Pl By the PAR; rule (several times),
Px P, 5 557 Pl P

If Q1 x Q2 = Q' was derived using the COM; rule (the COM; rule is similar) then
Q1 EN Q) and Q- 2 Q) and Q) x Q) = Q'. Because Q; :: I; we know I A I
and Q) :: Ij, and therefore Q1 :: I 2 Q' = I]. Because I x I, is defined, we
know I A I}, and that I; x I, = I] x I. Because inputs are deterministic, we
know @5 is the unique (graph) such that @), 2 Q4 and Q4 = I}, and therefore
QL Q)= I Applying the inductive hypothesis to Q; :: I; 5Q =1
we obtain P, = [} 5 557 Pl :Iand P : I] S @} = I]. Similarly, P, =
L DAL Py:Land Py :: I} S QY :: I Therefore P{ :: I] x Py = I, S Q7 =
I x QY == I, We already know Q) x Q5 = Q" and Il x I, = I, x I, = I,
so Q) = Il x Qy = I = Q' = I'' Applying the inductive hypothesis a third

time, P{ = I x Py = I} ' %5 P 2 I'and P' = I' S Q' = I'. Finally,

4.6. FURTHER WORK 20

. *)\ * *)\ * * * .
combine P, -+ == Pjand P, > &> Pjand P| x Py = =5 P’ to obtain
* * * *
PixPy 5 55 P,andhence Py :: [} x Py :: I, =5 =55 P’ :: I'asrequired. O

For the second result, I have extracted only the part of the proof that actually
concerns the test harness.

PROPOSITION 4.5.5. (Test harness)
Suppose a relation S on ::' is sound, reduction-closed and context-closed, and that P ::
I S @ :: Iand Q does not contain a ‘test’ node and @ :: I LN Q' I' for some

output action X. Then P :: I ALY P I and (P"xletEinl) = I' S (Q' x
let Ein1) = I'.

PROOF. Suppose A = Zc(§). Because @ does not contain a ‘test’ node, ¢ # test.
LetT = I(z) and U = I'(§), and define J = 2 : T, : U, so that I x J = I'. Define
a test harness R = let E in d(if,) where E is defined as follows:

E = {d(#,c(2)) — d(7, test(2)),
d(7, test(2)) — (7, 2)}

and note that R :: J.

Applying context-closureto P :: I S Q :: I, deduce (Px R) =I' S (Q xR) :: I'.
Now Q x R 5 @, where Q; = Q'[#* 7] x let E in d(#, test(Z)), which contains a
‘test’ node, and then Q1 = Q2 = Q'l¢» Z]x let Ein (i, 2) = Q' xlet E in 1, which
does not. By reduction-closure, we must therefore have P x R " P " P, and
Pl § QuuI'and P, = I' S Q2 :: I'. By soundness P; contains a ‘test’

node but P and P> do not. As in chapter 3, we can examine the derivations of

the transitions of P x R inductively to deduce P 7,720, 1" pr L P! and

P, = P 2] x let Eind(y,test(?)) and P, = P"[#H 2] x letEin (¢,2) =
P" xletEin1. O

4.6. Further work

Chapter 6 includes examples of optimisations which require a slightly more pow-
erful type scheme which I am not yet ready to present; these show up in its list of
known sources of incompleteness. An example (not from chapter 6) of an optimi-
sation in this class is that reversing a list twice is unnecessary, but only if the list
is finite. MIN is a lazy language, and it is quite possible to write a program that
returns the first few elements of a list and then loops for ever trying to calculate
the next, or indeed a program that returns an infinite list. Using the more powerful
type scheme, a programmer could indicate that he is only thinking of finite lists.

The modification is to introduce a strict version of every type. A strict output type
is a subtype of the ordinary output type, and conversely a strict input type is a
supertype of the ordinary input type. Syntactically, the extra subject-reduction
property is that only the principal port of a constructor may have a strict output
type. In other words, a port with a strict input type may not be joined to an aux-
iliary port. In particular, a strict input may not be joined to a non-terminating
computation, but only to one that has already sent a result. It is harder to phrase

4.6. FURTHER WORK 21

this subject-reduction property in terms of the labelled transition system. Simply
removing transitions is not enough. I think what is required is to replace a se-

quence of transitions P < @ 5, R with a single transition P 2% Rif the &
transition occurs at a strict port. This idea needs some fleshing out.

There are also examples which I don’t know how to handle. For example, know-
ing that a program behaves functionally, in the sense that it does not keep state
and does not leak data to a third party, allows the compiler to avoid calling it in
cases where its result is discarded. For an even harder example, a quick-sort and
a bubble-sort are equivalent only if the comparison function is total, transitive,
and stateless. The problem of capturing these and similar examples is alarmingly
open-ended.

