
Semi-Structured Syntax

Alistair Turnbull

30th March 2004

Abstract

The world needs another semi-structured syntax. Although it has many
benefits, XML has many flaws, and it would be nice to get the benefits
without the flaws. This is the specification of Semi-Structured Syntax (SSS),
a proposal for a standard that competes with XML. The principal point in
favour of SSS is that it is designed to be as legible by humans as possible,
so that it can be used for things like programming languages. SSS remains
readily legible by machines too.

1 Introduction

The principal flaws of XML were introduced as a by-product of designing it to
include a good approximation of HTML as a subset. They are are as follows:

• It is verbose and rebarbative.

• It is difficult to read.

• It is easy to make mistakes when editing it by hand.

• It is rather low level. For example, the syntax for numbers is minimal,
and there is no good, obvious way of defining an identifier to use else-
where.

Tools exist to minimise the impact of these flaws, but nobody in their right
mind would want to use an XML format for the source code of a programming
language. This is a pity, because XML has many good features:

• Character sets are properly specified.

• The lexical conventions are fixed. For example, one can always distin-
guish tags, attributes and comments from ordinary text in the same way
in any XML format.

• It requires little effort to invent a new XML format. This includes the
effort to provide tools for parsing the format and checking that a file con-
forms to the format, as well as to document it.

1

• It requires little effort to understand an XML format invented by some-
body else.

• The same tools can be used for all XML formats. This includes syntax-
colouring modes for editors, rewriting engines, parsers, compression al-
gorithms, and so on.

This document therefore proposes a competing standard, which shares the
good features of XML but avoids its flaws. The new standard is called Semi-
Structured Syntax (with the acronym SSS), a brand name that doesn’t appear
to be taken yet. I will consider SSS to be a success if it can be used as the
basis of programming languages. I also have in mind the following example
applications:

• I want to write a web photograph album. This will require a read-only
database holding information about the photographs, including the dates
on which they were taken, their captions, their orientations, and so on.
This will be a large data file that will need frequent editing by hand. An
SSS format would be good for this application.

• I want to put my family tree into a machine-readable form, so that I can
automatically generate views of the data that concentrate on the ances-
tors and descendents of particular people. I have all the data on paper,
but it is irregular and incomplete, and by its nature it is highly cross-
linked. Before SSS I invented a good application-specific file format to
represent the data, but it was a right pain, and with hindsight it came out
looking much like an SSS format.

• System administrators have many tasks that are unique to the system
that they administrate and that involve manipulating large data files. For
example, they need to keep track of users, their accounts, the machines
they use, the rooms they are in, and the resources (such as IP addresses)
allocated to them. These tasks all require data to be stored in a form that
can be both readily edited by humans and readily processed by machines.

1.1 Reading an SSS format

Although much of the data that will be stored in an SSS format will be in files,
I do not wish to narrow your imagination to just files, so I will talk about SSS
sentences. A sentence is a string of unicode characters. If an SSS format needs
to be stored as a string of bytes, the characters must be encoded into bytes
according to the UTF-8 standard encoding.

Parsing an SSS sentence involves the following steps:

1. Break the sentence into tokens using the fixed lexical rules described in
section 2.

2. Pair up the brackets, and check that the sentence obeys the indentation
rules described in section 3.

2

3. Parse the sentence according to an SSS grammar specification. SSS gram-
mars are described in section 4.

4. Walk the resulting raw parse-tree, check that the sentence obeys any
application-specific constraints, and construct an application-specific, type-
checked data structure for further processing.

Steps 1 and 2 are always the same for all SSS formats. Step 3 depends on an
application-specific grammar specification, but that is just a short data file (in
an SSS format, naturally), and in all other respects step 3 is always the same. It
is only step 4 that requires you to write any new code. The amount of code you
have to write has been minimised, and I hope you will agree that none of the
tasks in step 4 could be done in any other way. For simple applications, you
may be able to work with the raw parse-tree from step 3 directly, in which case
you don’t have to write any code at all.

2 lexical analysis

Lexical analysis is step 1 of the list in section 1.1. SSS prescribes a specific
algorithm for breaking a sentence into lexical tokens. There are nine kinds of
lexical token, all of which can be distinguished using only their first character,
apart from the three kinds of alphanumeric word, which do not need to be
distinguished in order to work out how many characters they contain. The
algorithm is to read the first character, work out what kind of token it belongs
to, read a token of that type, and repeat until the end of the sentence.

The nine kinds of lexical token are as follows:

• Comments start with a ’#’ (hash) character, and are described in section 2.1.

• String literals start with a double quote character, and are described in
section 2.2.

• Character literals start with a single-quote character, and are described in
section 2.3.

• Number literals start with a decimal digit, and are described in section 2.5.

• Words start with a letter, and are described in section 2.6. There are three
kinds of word, which for the sake of clear thinking are worth distinguish-
ing even at this level, and most of which are used in most file formats.
They are:

– Keywords are words that have syntactic significance. For example,
some programs will expect to find particular keywords in a sen-
tence. Changing a keyword can make the difference between a syn-
tactically correct and a syntactically incorrect sentence. Examples
of keywords in the C programming language (which is not an SSS
format) include “for ”, “while ” and “return ”.

3

– Constants are words that have significance outside the sentence. For
example, if one sentence needs to refer to part of another sentence, it
must do so using a constant. Constants differ from keywords in that
if you systematically rename all of the constants in all the sentences
in the world then their meanings will be unchanged. Examples of
constants in the C programming language include linker symbols,
enumeration values, and “NULL”.

– Identifiers are words that are defined in the same sentence in which
they are used. Identifiers differ from constants in that if you system-
atically rename all of the identifiers within just one sentence then
their meanings will be unchanged. Examples of identifiers in the C
programming language include local variable names.

• Any character chosen from “,.;()[]{} ” constitutes a token on its own.
The first three (“,.; ”) are called separators, and behave just like key-
words. The other six (“()[]{} ”) are the brackets matched in step 2 of
section 1.1, and cannot be used for any other purpose.

• A punctuation word is a maximal string of characters chosen from “!$%&*+-/:<=>?@\^_‘| ”.
Punctuation words behave just like keywords.

In addition, there may be zero or more white space characters between any
pair of tokens, and at the beginning or end of the file. The effect of white space
characters on the lexing algorithm is obvious: if the lexer is about to start a
new token and finds a white space character, it ignores it and moves on to the
next character. The four white space characters are tab (character 9), new-line
(character 10), carriage-return (character 13) and space (character 32).

The characters mentioned above are a subset of the ordinary ASCII character
set, including all of characters 32 to 126. No other characters may appear in an
SSS sentence, except inside a comment, string literal or character literal. If they
do appear, they constitute a syntax error.

This standard does not specify the behaviour of an SSS lexer if it encounters a
syntax error. However, it encourages lexers to make a valiant attempt to get
to the end of the sentence regardless, so that users can correct all the errors at
once, without having to run their sentence through the lexer repeatedly. The
conventions have been designed to make recovery from syntax errors reliable.

2.1 Comments

A comment starts with a hash character (’#’) and ends just before the end of
the line. Comments may contain any unicode characters.

There is no syntax for commenting out just the middle of a line, but it is easy to
copy the line, comment out one copy, and modify the other. There is no syntax
for commenting out a block consisting of many lines, but it is easy to comment
out all the lines individually. Indeed, the syntax of comments is the same as
for Python and Bash, so many text editors already provide a feature for adding
many ’#’ characters at once.

4

In most SSS formats, comments will be treated in the same way as white space.
However, in order to support applications where ignoring comments would
not be appropriate (for example literate programming) the SSS tools treat com-
ments as first-class lexical tokens.

2.2 String literals

A string literal starts and ends with a double quote character, and contains no
other double quote characters. Any unicode character may appear in a string
literal and denote itself, with two exceptions. For these exceptions, and to sup-
port ASCII-only editors, there is a notation which allows any character to be
represented as an escape sequence. Escape sequences are described fully in sec-
tion 2.4.

The two exceptional characters are as follows:

• A double quote character (34) may not appear in a string literal, because
it would be interpreted as the end of the string. You can use the escape
sequence “\22/ ” instead.

• A back-slash character (92) cannot appear in a literal string because it
introduces an escape sequence. You can use the escape sequence “\5C/ ”
instead.

Note that you don’t need to understand escape sequences in order to find the
end of a string literal, only to find its value. Having said that, you do need to
understand escape sequences in order to lex character literals correctly, so you
might as well write the code anyway.

2.3 Character literals

A character literal is a single character or a single escape sequence (see sec-
tion 2.4) enclosed in single quotes. The character literal for a single quote char-
acter is therefore three single quotes in a row.

In many SSS formats, a character literal is just an alternative notation for a num-
ber literal, and its value is the unicode code of the character. However, in order
to support SSS formats which make a clear distinction between characters and
numbers SSS also makes that distinction.

2.4 Escape sequences

Escape sequences are used in string literals and character literals. An escape
sequence denotes a single character. It consists of at least one and at most eight
hexadecimal digits enclosed between a backslash character and a (forward)
slash character. It denotes the character whose unicode code is the value of the
digits read as a hexadecimal number. The permissible hexadecimal digits are
“0123456789ABCDEF”. Note that the letters must be written in upper-case.

5

2.5 Number literals

SSS numbers can be written in base 2, 4, 8, 10 or 16, can have a fractional part,
and can be written in scientific notation. An SSS number consists of an integer
part, an optional fraction part, and an optional exponent part. The integer part
consists of a string of one or more hexadecimal digits, the first of which is a
decimal digit. The fraction part consists of zero or more hexadecimal digits
preceded by a ’. ’ character (46). The exponent part consists of a base character
followed by an optional ’- ’ character (45) followed by one or more decimal
digits.

For the purposes of this definition, a hexadecimal digit is one of the characters
“0123456789ABCDEF”. Note that the letters must be written in upper-case. A
decimal digit is one of “0123456789 ”. A base character is ’b’ for binary, ’q’ for
quarternary, ’o’ for octal, ’d’ for decimal or ’h’ for hexadecimal. If the fraction
part of a number is absent, “.0 ” is implied. If the exponent part is absent, “d0”
is implied.

It is a syntax error if the integer or fraction parts of a number literal use digits
that are too big for the base. For example, a number written in binary should
only use the digits ’0’ and ’1’. In order to recover most gracefully from such an
error, lexers are encouraged to accept all hexadecimal digits in the integer and
fractional parts. For example, on encountering “0F” the lexer should suppose
that the user meant the number “0Fh0” and mark it as an error, and should
not read it as the number “0” followed by the constant “F”.

It is a syntax error if a number without an exponent part is followed by a pos-
sible prefix of an exponent part. For example, ’1b ’ and ’1b- ’ are not allowed,
except as part of something like ’1b-1 ’. The ’b’ and ’- ’ must not be lexed as
separate tokens, because they are more likely to be part of a mis-typed number.
In general, any prefix of a valid number literal must be lexed as a single token,
and then possibly marked as an error.

The principal limitation of the syntax for number literals is that it is not able
to represent negative numbers. This is not a serious limitation, because any
particular SSS format can specify in its grammar that a number may optionally
be preceded by the punctuation word ’-’ (a single minus sign, character 45).
The limitation exists to avoid an awkward syntactic ambiguity. Few people
would want to use a language in which “2-1 ” can be read as “2” followed by
“-1 ”!

Here are some examples of numbers:

Syntax Value Syntax Value Syntax Value Syntax Value
1 1 1b1 2 1b10 1024 3.141593 about π

1. 1 1q1 4 1q5 1024 3.243F6Bh0 about π
1.0 1 1o1 8 1d3 1000 11.001001b0 about π
1d0 1 1h1 16 4h2 1024 1.1001001b1 about π

6

2.6 Words

A word is a maximal string of letters and digits starting with a letter. Words
may not contain underscore characters, which can therefore be used as punc-
tuation symbols. A word which consists entirely of capital letters and which
contains at least two characters is a keyword. A word which starts with a cap-
ital letter but which is not a keyword is a constant. A word which starts with a
lower-case letter is an identifier. Here are some examples:

Keywords Constants Identifiers
AA A Aa A1 a aa aA a1

FOR WHILE IF True False Null count ans x3Pos

2.7 Syntax colouring

The above definitions can easily be converted into a syntax colouring mode for
a text editor. I’ve just written one for NEdit, having never written one before.
It took just a few hours, including reading all the help files and learning the
regular expression syntax. All the different lexical tokens can be recognised by
regular expressions.

In NEdit, there are two kinds of syntax patterns. The first kind is for short
things such as keywords, and is defined by a single regular expression. Any-
thing matching the expression gets coloured. The second kind is for longer
things like comments and strings, and is defined by a pair of regular expres-
sions. One matches things that mark the start of a region to be coloured, and
the other matches things that mark the end. Text is coloured according to which
of the two was matched most recently. The final subtlety is that patterns can be
constrained to operate inside other patterns, which is very useful.

I used both kinds of pattern. I used the following one-expression patterns:

Colour Regular expression Inside
Keyword [A-Z]{2,}(?![A-Za-z0-9])
Constant [A-Z](?:[A-Z]*[a-z0-9][A-Za-z0-9]*)?
Identifier [a-z][A-Za-z0-9]*
Number [0-9][0-9A-F]*(?:\.[0-9A-F]*)?(?:[bqodh]\-?[0-9]*)?

StringEscape \\[0-9A-F]{1,8}/ String
Char ’(?:[^\\]|(\\[0-9A-F]{1,8}/))’

CharEscape \\[0-9A-F]{1,8}/ Char
Lone [,\.;\(\)\[\]\{\}]

Punctuation [!\$%\&*\+\-/:\<=\>\?@\\\^_‘\|]+
Nonsense anything else

I used the following two-expression patterns:

Colour Start expression End expression Inside
String ” ”

Comment # (?=\n)

7

Other editors will inevitably not use the same algorithms and regular expres-
sion syntax as NEdit, but I hope the above information will be useful anyway.

3 Indentation rules

white space in SSS formats is not significant, in that it does not change the
meaning of a sentence, except in that it separates tokens that would otherwise
merge into one token, and in that a new-line character can mark the end of a
comment. In particular, anywhere you put a space or a tab you could equally
put any string of spaces and tabs, and anywhere you put a new-line you could
equally put any number of new-lines. However, you mst obey some rules
about the indentation at the beginning of each line. The white space doesn’t
mean anything, but it has to be there.

The purpose of the indentation rules is to make 100% of people do what 99% of
people already do regarding indentation, namely to indent lines that are com-
pletely enclosed in brackets. By introducing this certainty, the information in
the indentation becomes useful. The information in indentation is technically
redundant, but:

1. it is much easier to see indentation than open- and close-bracket charac-
ters, so the indentation brings out the nesting structure of the sentence,
and

2. by comparing the indentation to the brackets in a sentence a computer
can detect many mistakes automatically.

3.1 Brackets

Round brackets, square brackets and braces in SSS must be matched. An SSS
format cannot define a bracket or brace or any string of characters containing a
bracket or brace to mean anything else. If it were not for this rule, an SSS gram-
mar would be perfectly capable of defining that brackets must be matched, and
I expect most SSS formats would indeed decide to do so, but forcing the issue
has several advantages:

• Brackets always mean the same thing, so new SSS formats are easy to
learn.

• SSS grammars can be simpler and higher-level.

• It is possible to generate more helpful error messages from an algorithm
that knows it’s just matching brackets than from a general purpose al-
gorithm that just happens to be following a grammar in which brackets
must be matched.

• If brackets must be matched, then it is possible to define indentation
rules.

8

If an SSS format needs more than three kinds of matched bracket, it can reuse
one of them, but use its grammar to insist on a keyword (say) before the open-
ing bracket. This is roughly what the C programming language does for “while ”
loops, for example. If an SSS format needs a kind of bracket that does not nest
with the others, it can either use keywords like “BEGIN” and “END”, or it can
use punctuation words involving angle brackets. These cases are rare.

3.2 Depth

The indentation rules are defined in terms of a concept called depth. The depth
of a line is a number, equal to the number of matched brackets or braces that
completely enclose the line, including the newline characters immediately be-
fore and after it (if any). The depth of the first and last line is therefore always
zero, and the depth of a line in which all the brackets and braces are matched
with other brackets and braces on the same line is the same as if it contained
no brackets or braces.

3.3 Indentation

The amount of indentation at the beginning of a line requires a careful defini-
tion, because it may be composed of a mixture of different sorts of white space
characters. For example, how big is a tab character compared to a space char-
acter? There are many possible approaches to this problem. The one I have
chosen is to reduce the indentation at the start of a line to a single number,
which represents the number of space characters that would be equivalent to
the characters actually used.

To be more precise, the amount of indentation is the horizontal position of the
text cursor after printing the indentation characters according to the normal
unix rules:

• The cursor starts at position zero.

• Each space moves the cursor one place to the right.

• Each tab moves the cursor at least one place to the right, to the next mul-
tiple of eight.

• Each carriage-return character moves the cursor back to position zero.

3.4 The rules

The indentation rules, which do not apply to lines that consist solely of white
space, are as follows:

• A line with a depth of zero must have an indentation of zero.

• If two lines have the same depth then they must have the same indenta-
tion, unless there is a line between them with a smaller depth.

9

• If two lines have different depths then the deeper one must have more
indentation than the shallower one, unless there is a line between them
with a smaller depth than both of them.

Here’s an example of a sentence that obeys the rules (I’ve chosen a two-space
indentation quantum, but that’s not forced):

blah (blah blah) blah
blah
blah (blah)
{

blah
IF (blah) {

blah
RETURN blah + (

blah + (
blah [(blah) blah]

)) + blah
} ELSE {

blah
}
DO { blah {

blah
}
blah

} WHILE (blah)
}

3.5 Comments and literal strings

The indentation rules do not apply inside literal strings. A new-line character
inside a literal string is not considered to start a new line, and is treated just like
any other character. The motivation for waiving the indentation rules inside
strings is to allow strings that contain new-line characters that are not followed
by lots of spaces.

The indentation rules do not apply to lines which consist only of comments.
The motivation for waiving the indentation rules before comments is to allow
a ’#’ character to be placed at the beginning of a line, not necessarily at the
correct indentation position. However, a new-line character at the end of a
comment is not part of the comment, so the indentation rules do apply to the
following line (if it does not also consist only of a comment).

4 Grammars

Step 3 of the list in section 1.1 is to parse the sentence according to a grammar.
This is the first step that differs for different SSS formats. However, there is no

10

need to write new code for every new SSS format: it suffices to write an SSS
grammar specification.

A grammar specification both defines a subset of SSS and also begins to define
a representation for its parse trees. Having decided to use an SSS format, writ-
ing a grammar specification is a good second step, which offers the following
advantages:

• From a grammar specification you can generate a basic parser for your
syntax almost for free, using an automatic tool. This saves you work.

• By capturing many of your design decisions in one place, using a gram-
mar specification makes your syntax more maintainable.

• People who understand grammar specifications will find it easier to un-
derstand your syntax.

4.1 Limitations

The expressiveness of SSS grammars has its limits. These limits translate into
restrictions on the design of your syntax. The restrictions are quite weak; if
you can’t get exactly the syntax you want you’ll be able to get something pretty
close. One valid approach is to write a grammar specification that describes a
superset of your syntax, pocket the benefits including the automatically gener-
ated parser, and write a separate program to do the remaining work.

The main expressiveness limit is that if you take all the legal strings of a syntax
defined by an SSS grammar, and erase the contents of all brackets and braces
in those strings, the remaining strings form a regular language. This does not
mean your syntax has to be a regular language. It does mean, however, that all
recursion in your grammar (other than simple repetition) must involve brack-
ets.

The other expressiveness limit is that whenever a grammar gives two alter-
native syntactic constructions, they must be distinguishable without looking
inside any brackets or braces. In other words, the parser will not backtrack
once it has entered a bracket. There are benefits to this limitation:

• A syntax error inside a bracket won’t interfere with the parsing of the rest
of the sentence.

• Different brackets can be parsed and hence debugged in parallel.

4.2 Concepts and terminology

A grammar defines a set of sentences. If the set contains a sentence, we say the
grammar accepts the sentence. In SSS there are two kinds of grammar: terminals
and quantified non-terminals. Terminals stand alone, whereas quantified non-
terminals are defined in terms of simpler grammars, as explained below.

11

4.2.1 Parsing

Note that we are not only interested in which sentences a grammar accepts, but
also in the reasoning that explains why the grammar accepts a sentence. Ar-
guably, this reasoning contains most of the meaning of the sentence. Because
quantified non-terminals are defined in terms of simpler grammars, the reason-
ing is structured like a tree, and is called the parse-tree. The processing needed
to calculate the parse-tree of a sentence is called parsing.

Sometimes there is more than one possible parse-tree for a sentence. If this
happens, the sentence has more than one possible meaning, and it is said to
be ambiguous. We sometimes also say a grammar is ambiguous, if it has some
ambiguous sentences. In order to resolve ambiguity, an SSS grammar always
defines which parse-trees are preferred.

4.2.2 Terminals

Terminals are simple: a terminal is a grammar whose sentences are those con-
sisting of a single lexical token satisfying some property. For example:

• The grammar defining the set of all literal strings is a terminal.

• The grammar defining the set of all sentences enclosed in curly brackets
is a terminal.1

• The grammar defining the singleton set containing only the keyword
“GOTO” is a terminal.

SSS gives you a fixed list of terminals to choose from (including the first two
examples above), and allows you to define new terminals each of which is a
singleton set containing only a keyword of your choice (such as “GOTO” above).
It does not allow you to define new terminals in any other way. Terminals are
never ambiguous.

4.2.3 Quantified non-terminals

Quantified non-terminals are a little more complicated, and I will build up to
them by first defining the concepts of production, non-terminal and quantifier.

A production consists of a constant and a sequence of grammars. The constant
is just used as an identifier for the production. The grammars that make up
a production are called its parts. Intuitively, a production is a grammar that
accepts any sentence that can be made by concatenating a sentence that its
first part accepts, a sentence that its second part accepts, and so on. Formally,

1This is an unusual use of the word ‘terminal’, because of an unusual property of SSS. If you
understand ‘terminal’ to mean ‘point beyond which the parser does not look’ then it is clearly the
right word. In other contexts, the word ‘terminal’ often also means ‘point beyond which there is
no more structure’, but in SSS the two points do not always coincide.

12

a production is not a grammar, but it is possible to define a quantified non-
terminal that accepts exactly the same sentences as a production intuitively
accepts, so it makes sense to talk of the sentences accepted by a production.

Productions can be ambiguous even if none of their parts is ambiguous. For ex-
ample, imagine a production with two parts, the first of which accepts the sen-
tence “FROG” and the sentence “FROG GOOSE” (and prefers the former), and
the second of which accepts the sentence “SHEEP” and the sentence “GOOSE
SHEEP” (and prefers the former). Then the production accepts the sentence
“FROG GOOSE SHEEP” in two ways. The ambiguity is resolved by favouring
the first part over the second (which is favoured over the third, if necessary,
and so on). Therefore, the preferred parse-tree is the one which gives “FROG”
to the first part and “GOOSE SHEEP” to the second.

A non-terminal consists of a list of productions with different identifying con-
stants. Intuitively, a non-terminal is a grammar that accepts any sentence that
is accepted by at least one of its productions. Formally, a non-terminal is not a
grammar, but it is possible to define a quantified non-terminal that accepts ex-
actly the same sentences as a non-terminal intuitively accepts, so it makes sense
to talk of the sentences accepted by a non-terminal. To resolve the ambiguity
that arises when more than one production accepts a sentence, the productions
are listed in order of preference.

A quantifier is one of ‘exactly one’, ‘zero or one’, ‘zero or more’ or ‘one or more’.

A quantified non-terminal is a grammar that consists of a non-terminal and a
quantifier. It accepts sentences that can be formed by concatenating some
number of sentences that are accepted by the non-terminal. The quantifier
constrains the number of sentences that must be concatentated. Quantified
non-terminals are greedy: other things being equal, they prefer to accept larger
numbers of sentences.

Quantified non-terminals can be ambiguous even when their non-terminal is
not. The argument is just like that for productions. For example, imagine a
non-terminal that accepts the sentence “FROG”, the sentence “FROG GOOSE”,
the sentence “SHEEP” and the sentence “GOOSE SHEEP” (in order of prefer-
ence). Then the quantified non-terminal which requests one or more of that
non-terminal accepts “FROG GOOSE SHEEP” in two ways. The ambiguity is
resolved by favouring the first of the concatentated sentences over the second
(which is favoured over the third, if necessary, and so on). Therefore, the
preferred parse-tree is the one which gives “FROG” to the first sentence and
“GOOSE SHEEP” to the second.

In SSS, a production never accepts the empty sentence. This is guaranteed
by requiring that at least one of the parts of a grammar is either a terminal or a
quantified non-terminal whose quantifier is ’exactly one’ or ’one or more’. This
imposes almost no inconvenience on people designing grammars (because of
the quantifiers ’zero or one’ and ’zero or more’) but it usefully simplifies the
task of calculating the parse-tree of a sentence.

13

4.2.4 Names of non-terminals

In an SSS grammar specification, non-terminals are named. The purpose of
these names is to allow a non-terminal to be used in more than one place in the
grammar, without explicitly repeating it. The names have no other purpose,
and are meaningless outside the specification (they are local) and so they take
the form of SSS identifiers. The purpose of names is not to allow non-terminals
to be defined in terms of themselves, which is expressly forbidden in SSS. The
only ways to define a grammar that can accept arbitrarily long sentences are
using quantifiers or brackets.

4.2.5 Brackets

Brackets (including round and square brackets and also braces) in SSS are a
special case, because they are handled by the lexer. SSS provides three special
terminals each of which accepts anything enclosed in one of the three kinds
of brackets. There is no way to define a grammar which will decide whether
to accept or refuse a sentence based only on what is inside a bracket. In that
sense, the bracket terminals are strictly terminals, and are not defined in terms
of simpler grammars.

However, we do of course care what is written inside brackets. After parsing
a sentence (which finds all of the brackets), the first thing we want to do is to
parse the contents of the brackets. For this purpose, we need another grammar,
or perhaps several if the outer grammar makes several different uses of brack-
ets. Sometimes the contents of brackets have the same grammar as the whole
sentence, but not always. Furthermore, when there is more than one grammar,
some of the non-terminals of the different grammars are often the same. It is
therefore convenient to be able to store more than one grammar in a single SSS
grammar specification.

For this purpose only, every bracket terminal is annotated with a grammar,
usually a quantified non-terminal. In particular, a non-terminal named ’x’ can
contain a bracket that is annotated with a quantified non-terminal based on
’x’. This looks like recursion, but it is allowed, because the annotation on the
bracket is ignored until the outer sentence has been completely parsed.

4.3 Syntax

An SSS grammar specification is itself an SSS sentence, and obeys all of the SSS
lexical conventions. This section gives a bottom-up description of the syntax
of an SSS grammar specification.

4.3.1 Non-bracket terminals

The fixed terminals in the grammar, other than brackets, are represented as
follows:

14

• The keyword “COMMENT” represents a terminal that accepts a comment.

• The keyword “CONSTANT” represents a terminal that accepts a constant.

• The keyword “IDENTIFIER ” represents a terminal that accepts an iden-
tifier.

• The keyword “STRING” represents a terminal that accepts a literal string.

• The keyword “NUMBER” represent a terminal that accepts a literal num-
ber.

4.3.2 Keywords

A literal string represents a user-defined terminal that accepts only a particular
keyword, separator character or punctuation word. Such a terminal only ac-
cepts a token if its characters exactly match the value of the string. It is an error
if the value of the string does not lex as a single keyword, separator character
or punctuation word.

4.3.3 Quantified non-terminals

Quantified non-terminals in the grammar are represented as follows:

• An identifier x represents a quantified non-terminal that accepts exactly
one sentence accepted by the non-terminal named x.

• An identifier x followed by a question mark (’?’) represents a quanti-
fied non-terminal that accepts zero or one sentences accepted by the non-
terminal named x.

• An identifier x followed by a star (’* ’) represents a quantified non-terminal
that accepts zero or more sentences accepted by the non-terminal named
x.

• An identifier x followed by a plus (’+’) represents a quantified non-terminal
that accepts one or one sentences accepted by the non-terminal named x.

In each case, the non-terminal named x is defined elsewhere in the grammar
specification (see section 4.3.6).

4.3.4 Brackets

Terminals in the grammar that accept something in brackets are represented as
follows:

• The keyword “ROUND” followed by a terminal or quantified non-terminal
g in round brackets represents a terminal that accepts any string enclosed
in round brackets.

15

• The keyword “SQUARE” followed by a terminal or quantified non-terminal
g in round brackets represents a terminal that accepts any string enclosed
in square brackets.

• The keyword “BRACE” followed by a terminal or quantified non-terminal
g in round brackets represents a terminal that accepts any string enclosed
in braces (curly brackets).

In each case, the contents of the brackets should be parsed according to g. Note
that g can itself be a bracket terminal.

4.3.5 Production

A production is represented by a constant followed by braces. The constant
identifies the production, and is copied into the parse-tree when the produc-
tion is used. The braces must contain a string of comments, terminals and
quantified non-terminals. The terminals and quantified non-terminals are the
parts of the production. At least one of the parts must be a terminal or a quanti-
fied non-terminal whose quantifier is ’exactly one’ or ’one or more’. Therefore
there must be at least one part.

4.3.6 Non-terminal

The declaration of a non-terminal consists of an identifier followed by the
punctuation word “::= ” followed by braces. The identifier is the name of the
non-terminal. The braces must contain a string of comments and productions.
There must be at least one comment or production, so to define a non-terminal
that accepts nothing at all it is necessary to use a comment such as “deliber-
ately left blank”. The productions are the productions of the non-terminal, and
are listed in order of preference.

4.3.7 Root

A root declaration consists of the keyword “ROOT” followed by a terminal or
quantified non-terminal. It specifies which of the grammars in the specification
is the grammar of a whole sentence.

4.3.8 Specification

The entire specification takes the form of a string of comments, non-terminal
declarations and root declarations. Declarations may only make use of non-
terminals that are declared by other declarations. Except in the round brackets
after “ROUND”, “SQUARE” or “BRACE”, declarations may only make use of non-
terminals that are declared by earlier declarations. There may only be one root
declaration.

16

4.4 Example: arithmetic

Here is an example of an SSS grammar specification for ordinary four-operation
arithmetic expressions:

sign ::= {Minus {"-"}}
atom ::= {Number {sign* NUMBER} Bracket {sign* ROUND(sum)}}
multiplicand ::= {Multiply {"*" atom} Divide {"/" atom}}
product ::= {Product {atom multiplicand*}}
summand ::= {Add {"+" product} Subtract {"-" product}}
sum ::= {Sum {product summand*}}
ROOT sum

The non-terminal “sign” accepts only the punctuation word “- ”, a minus sign.
The production “Number” accepts a number literal preceded by zero or more
minus signs, such as “- -5 ”. Note that it does not accept “--5 ”, because “-- ”
lexes as a single punctuation word. The production “Bracket” accepts some-
thing in round brackets preceded by zero or more minus signs, and specifies
that the contents of the brackets should be parsed as a single sentence accepted
by the non-terminal “sum”. The non-terminal “atom” accepts anything ac-
cepted by “Number” or “Bracket”. Continuing in this vein, the non-terminal
“product” accepts one or more atoms separated by “* ” and “/ ” operators, and
the non-terminal “sum” accepts one or more products separated by “+” and
“- ” operators. Finally, a whole arithmetic expression must parse as a single
sum. Thus a typical sentence accepted by this grammar is “-10 * -(7 +
5/3) * 1.0101001b-10 - 0.03 ”.

4.5 Example: Specification of specifications

I conclude this section with an SSS grammar specification for SSS grammar
specifications.

Note that this grammar is not a complete specification of the format. For exam-
ple, it does not specify that at least one of the parts of a production must be a
terminal or a quantified non-terminal whose quantifier is ‘exactly one’ or ‘one
or more’, it does not specify that non-terminals must be declared before they
are used, and it does not specify that there must be exactly one root declara-
tion. This sort of incompleteness is typical of grammar specifications. If I had
not just described the extra conditions in the preceding sections, I might have
described them in comments in the grammar.

grammar ::= {
GramComment {COMMENT}
Comment {"COMMENT"}
Word {STRING}
Constant {"CONSTANT"}
Identifier {"IDENTIFIER"}
Bracket {"ROUND" ROUND(grammar)}

17

Square {"SQUARE" ROUND(grammar)}
Brace {"BRACE" ROUND(grammar)}
String {"STRING"}
Number {"NUMBER"}
Char {"CHAR"}
Exact {IDENTIFIER}
Option {IDENTIFIER "?"}
Star {IDENTIFIER "*"}
Plus {IDENTIFIER "+"}

}
production ::= {

ProdComment {COMMENT}
Production {CONSTANT BRACE(grammar+)}

}
declaration ::= {

DecComment {COMMENT}
NonTerminal {IDENTIFIER "::=" BRACE(production+)}
Root {"ROOT" grammar}

}
ROOT declaration+

5 Conclusion

SSS effectively captures the common portion of the work involved in inventing
a new data format. It makes a large number of uninteresting decisions in an
arbitrary but reasonable way, thus saving time for the inventer of a format and
also for people learning the format later, and reducing the probability of really
bad decisions. SSS grammars provide a convenient, concise and uniform way
of experimenting with a new format, and then of describing it.

Some small sacrifices of decision-making are necessary to use SSS but they are
worth it. A single syntax-colouring mode works for all SSS formats. The SSS
lexer can be used unchanged for any SSS format, and the parser is parame-
terised only by an SSS grammar file, and can therefore be generated automati-
cally. Furthermore, for no more effort, it can be generated automatically in all
programming languages to which the SSS tools have been ported. You can also
reasonably expect SSS tools to be efficient and reliable and to produce useful,
comprehensible error messages.

SSS adheres to a ruthlessly high exchange rate of features for complexity. There
are many places where I could have added ‘just a few more lines of code’ to
cope better with a case that is a little uncommon, but I have resisted such temp-
tations. As a result, the SSS tools are unusually simple for their power, and the
task of implementing them correctly is easily manageable.

SSS does not attempt to be exhaustive in its feature list, but instead makes
an effort not to prevent you doing anything. At a high level of the design
process it stands aside and let’s you finish off the interesting part. This lack of
preconceptions makes SSS suitable for an enormous variety of tasks.

18

As an alternative to XML, SSS deserves to win in many niches. It permits much
more freedom in the design of data formats, and in particular it supports much
more readable and also concise syntaxes. It does not monopolise the useful
punctuation symbols “<>&”. It does not insist on unsightly and opaque runes
at the start of every file. By distinguishing keywords, constants and identifiers,
it makes an effort to support formats in which data is not all stored in the same
file. In general it is designed for applications as demanding as configuration
files and programming languages, for which XML is quite unsuitable. It will
do all this, and can still do a reasonable job of describing markup languages,
which is XML’s home territory.

19

